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We describe a finite element method for the numerical solution of the two-dimensional 
Stefan problem. At each time step, the free boundary is approximated by a polygonal 
line whose vertices coincide with triangulation nodes. This is achieved by using space 
time finite elements, which allow a change in the position of the nodes at each time step. 
Numerical results are given. 

1. INTRODUCTION 

The computation of the free boundary is the main difficulty in the numerical solu- 
tion of the Stefan problem. In the one-dimensional case, there are various numerical 
methods which involve an explicit computation of the free boundary [8, 10, 14, 21, 
231. But, in the multidimensional case, the computation of the free boundary is 
much harder [9, 181. Hence, during the last few years, several authors have developed 
methods which avoid computing the free boundary. These methods are based either 
on the numerical solution of a nonlinear partial differential equation [7,22] according 
to a formulation of Oleinik [24] ( see also [19]), or on the numerical solution of a 
variational inequality [ 1, 5, 131, according to a formulation of Baiocchi [2] and 
Duvaut [ll, 121 (see also [20]). Let us also mention the alternating phase truncation 
method of Berger et al. [3] which is also related to the solution of a variational 
inequality. 

Despite the interest of such methods, we have thought that the explicit computation 
of the free boundary in the multidimensional case remained an interesting problem 
and we have studied a method for that. This method uses space-time finite elements 
(see [15]), which allow one to move the nodes of the triangulation at each time step 
in such a way that the free boundary is always approximated by a polygonal curve 
whose vertices are nodes of the triangulation. This method can be applied provided 
the free boundary is sufficiently regular. It has already been used by the authors for 
two types of one-dimensional free boundary problems: the Stefan problem [4], and 
compressible flow [ 171. 

Let us notice that although our method is basically different from the Isotherm 
Migration Method of Crank and Gupta [9], there is a certain resemblance in the 
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approximation of the free boundary. Our method is more general since the initial 
function u” can be arbitrary whereas the I.M.M. method requires the monotonicity 
of u” with respect to one space-variable; also, it can be applied to a great variety of 
domains which need not even be simply connected. 

In Section 2, we describe the problem that we want to solve and we derive an 
integral identity which is the basis of our method. In Section 3, we assume that the 
free boundary is known and we describe a numerical method to solve the heat equa- 
tion in a given variable domain. In Section 4, we describe the computation of the free 
boundary. In Section 5 we give an account of numerical experiments. Section 6 contains 
some general remarks and comments. Finally, explicit expressions for the coefficients 
of the discrete equations are given in an Appendix. 

2. DESCRIPTION OF THE PROBLEM 

Let D be a given domain in R2 and r, be a given portion of its boundary aD. 
Let Q(t) be a bounded subdomain of D which depends on the time t and whose 
boundary X?(t) contains r, . Let us write aD(t) = r, n r2(t) u V?(t), where r,(r) C 
aD, %?(t) C D and r, u F2(t) = o. The curve e(t) is the free boundary. 

FIG. 1. The fixed domain D, the variable domain Q(t), and the free. boundary WI. 

We will use the following notation. 

v = v(P) = outward normal unit vector at a point P E X!(t), 

U, = outward normal speed of propagation of the free boundary V(t), 

+/av = derivative along the vector v of an arbitrary function q~, 

dg, = Laplacian of the function y. 

2 = {(P, t); P E Q(t), t > O}, 
z; = {(P, t); P E r, , t > O}, 

z2 = KP, 0; p E rz(t), t > o>, 
.q = {(P, t); P E g(t), t > O}. 
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Finally, for simplicity of notation, we will use the same notation for the domain 
Q(t) C 5P and the corresponding section of W, i.e., the set ((P, t); P E Q(t), t tied). 
This should not lead to any confusion. 

Let c be a given positive constant. Let Q(0) be given and a0 be a given positive 
function defined in D(O). Let g be a given positive function detied on A’, . Our 
problem is to determine the variable domain Q(t) and a positive function u defined 
in W such that 

(au/at) - du = 0 in W, w 
u = 240 on Q@% (2.2) 
u=g on&,, (2.3) 

(aupv) = 0 on&,, (2.4) 
u=o on Y, (2.5) 
u, = -c (aupv) on Y. (2.6) 

Equation (2.1) is the heat equation; (2.2) is the initial condition; (2.3), (2.4), and 
(2.5) are the boundary conditions; (2.6) determines the propagation of the free 
boundary. 

Now, we transform the partial differential Eq. (2.1) into an integral identity which 
is the basis of our finite element method. Let 8 be the set of all continuous functions 
defined in W, which admit bounded first-order derivatives in W and which vanish on 
Z; u 9’. Let e1 and & be two arbitrary nonnegative numbers, 0 < B, < 8, , and let 
G be the intersection of W with the strip e1 < t < 8, , i.e., G = ((P, t); P E Q(t), 
8, < t < f&}. Multiplying Eq. (2.1) by an arbitrary function y E 8, integrating by 
parts in G, and taking account of the boundary condition (2.4), we get 

A&, ‘PI = 0, 

where A&, (p) is the bilinear form 

for all 9) E 8, (2.7) 

A&, 9) = - jjjG u g dP dt + J‘JT, grad u - grad cp dP dt 

+ ss*(s,) uy dp - !I(,,, u9J dp* (2.8) 

Conversely, any function u which satisfies the integral identity (2.7) for all 8r and 
8, and which is sufficiently smooth, satisfies the partial differential Eq. (2.1) and the 
boundary condition (2.4). Subsequently, we will replace the two Eqs. (2.1) and (2.4) 
by the integral identity (2.7). 

3. NUMERICAL SOLUTION OF THE HEAT EQUATION IN A VARIABLE DOMAIN 

In this section, we assume that W is known and we describe a finite element method 
to solve the problem ((2.1)-(2.5)). (We have excluded Eq. (2.6) since the free boundary 
is known.) 

581/25/w 
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First, we discretize the domain W by means of isoparametric finite elements cor- 
responding to a six-noded triangular prism (see [25, Section 7.121). These elements are 
arranged in the following way. Let Kin denote an arbitrary element, where i is a 
space-index and n a time-index, 1 < i < I, n 3 0. Each element Kin admits two 
triangular bases Tin and TT+l contained in the planes t = tn and t = P+l, respectively, 
with, tn+l > tn > to = 0. The two elements Kin dans KY-l have in common the base 
Tp . Moreover, let 52” = {uTi”; 1 < i f I}; its boundary ZP is a polygonal line 
whose vertices are located on &2(P). Finally, let Pp, 1 < I < L, denote the vertices 
of the triangles T,“, 1 < i < I; th ese points are called the nodes of the triangulation 
and we say that two nodes Pin and PF’ are neighbors if they belong to a same edge 
of one of the elements Kin. Each node Pin admits a unique neighbor Pp+’ in the plane 
t = tn+l and the following conditions must be satisfied. If Ptn E & (resp. ZZ or the 
interior of a), then Pr+l E ZI (resp. Zl, or the interior of 9%‘); if PC* E 9, then Pr+’ E 
9’ u .& . Note that, in the latter case, P, 12+1 does not necessarily belong to Y; this is 
related to the fact that the free boundary can disappear if the domain Q(t) invades 
the whole domain D. 

FIG. 2. A finite element Kp. 

Now, we want to discretize the integral identity (2.7). Let Ghn = {UKin; 1 < i < I} 
and S& = {UGhn; n , > O>, where h is a certain parameter which characterizes the 
discretization and which tends to zero as the mesh is uniformly refined. Let V, be 
the set of all functions which are defined and continuous in Wh and whose restriction 
to each element Kp is linear along the edges and linear with respect to the space 
variables for arbitrary fixed t. For each n, we denote by ghn the set of all functions 
vis E V, which satisfy g+,(Pp) = &P;+‘) f or all 1 and which vanish at the points 
P;+l EZ; u 9. Let us choose 13~ = P, 8, = t *+l and let A”(u, 9) be an approximation 
of the bilinear form &(u, IJZJ) obtained by replacing G by Ghn and by approximating 
the integrals by means of numerical quadrature formulas that we will specify later 
on. Then, our discrete problem is the following. Find uh E V, such that 

4uh , Fh) = 0, for all v)h E ghn and all 12 3 0, 

uh = tf at all the nodes Pto, 

% = g at all the nodes Pin E Z; , 
Uh = 0 at all the nodes Pin E 9’. 

(3.1) 
(3.2) 
(3.3) 

(3.4) 
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For each n > 0, (3.1) is a system of linear algebraic equations whose unknowns 
are the values of the function uh at the nodes Pr+’ E W U Cz . By taking yh equal to 
each of the functions c&‘) E 8,” such that y@(Pzn) = 1 and pliz’(Pjn) = 0 for j # 1, 
we get a system of equations with a sparse matrix; each equation involves only the 
unknown values of uh at the node Pa+’ and its neighbors in the plane t = tn+l. 

It remains to specify the quadrature formulas that we have chosen to approximate 
the bilinear form (2.8). 

The space integrals are approximated by using the following formula on each 
triangle Tin 

I! a) dP -Q (Meas. Tp) c #(Pp) = $(I,!J; Tp), (3.5) 
T; 1 

where I/ is an arbitrary function, Meas. Tin denotes the area of the triangle Tin and 
the sum is taken for the three vertices P,” of the triangle Tin. 

The triple integrals are approximated by using the following formula on each element 
Ki” 

IllI 
a) dP dt - p(tn+l - t”>(A#; Tin) + A#; TT+l)). (3.6) 

K; 

The coefficients of Eqs. (3.1) can be computed in the same way as in the one- 
dimensional case [4].We will not describe the details of this computation. We refer 
to the Appendix for the explicit expressions of the coefficients. 

Particular case. Assume that the elements Kin are right prisms and that their bases 
are equal right triangles whose sides are parallel to three fixed directions (see Fig. 3). 
Then, it is easy to check that, our method is identical to the Crank-Nicolson scheme 
(but, variable domains cannot be treated in this way, since the position of the nodes 
is kept fixed). 

Fm. 3. Triangulation with equal right triangles. 

4. COMPUTATION OF THE FREE BOUNDARY 

We will now describe how we determine the free boundary at each time-step. In 
this section, we consider only the space position of the points and curves of 9; but; 
for simplicity, we use the same notation to denote a point or curve of 9 and its 
projection on the space R2. 
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Let P be the portion of %P which approximates the free boundary ‘X(P) at the 
time P; it is composed by all the straight segments of %P which have at least one 
extremity inside W. The extremities of V”, are located on the boundary of D 
(see Fig. 4). 

Extremities of b! 

R”= hatched domain 

FIG. 4. The discrete domain s;)” and free boundary @. 

Let Pi be an arbitrary vertex of V”. We want to determine the corresponding point 
PT+' at the time t = t %+l. To simplify the notation, we will omit the index 1; thus, 
we will write P" and Pnfl instead of Pp and Py". 

We consider two cases. 

Case 1. The point Pn is not an extremity of V”. Then, it admits two neighbors on 
P, say PI" and P2". Let us remark that Eq. (2.6) involves only the normal speed of 
propagation. Therefore, we can move the point P* in an arbitrary direction. Let 6 
be the straight line along which we want to move the point Pn in order to get the point 
Pn+l. We impose the two conditions: the two segments PnPln and P"P," must be 
located on opposite sides of 6 and the angle of each of them with 6 must not be 
“too small”; for example, we could choose 6 to be the bissectrix of the angle deter- 
mined by these two segments. In the same way, we denote by 6, and 6, the two 
straight lines along which we want to move the points PI” and Pzn in order to get 
PT” and Pf+l. 

Let vi be the unit vector which is perpendicular to the segment PnPjn, for j = 1 
and 2, and oriented towards the outside of JP. Let Tj = -c(tn+l - t”)(au,/&), vj , 
where (&J&J),), denotes the constant value of the outward normal derivative of z+, 
on the segment P"P,". Let Sin be the straight line through the points P” and Pp, 
and let Sj’ be its image by the 7j translation. We consider the following points: 
Pj' = Si n S, Pij = Si’ n 6, , Qj = midpoint of the segment P,'Pi, for j = 1 and 2, 
Pi = 6 n [Q,Q,] where [Q,Q,] denotes the straight segment joining Q, and Q, . 
The three points PI’, Pi, and P3’ are located on the straight line 6; we denote by P’ 
the point among these three which is located between the two others or possibly 
coincides with one of the others. (See Figs. 5 and 5’ which show two different 
cases.) 
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FIG. 5. Displacement of the free boundary. In this case, we have P’ = P,‘. 

FIG. 5’. Displacement of the free boundary. In this case, we have P’ = PI’. 

Let (PP’) denote the open straight segment joining the points P” and P’, and 
[P”P’] denote the corresponding closed segment. Then, we determine the point Pn+l 
as follows. 

If (P”P’) C D, we take Pn+l = P’. 
If (P”P’) is not contained in D, we take Pnfl such that Pn+l E [P”P’] n aD and 

(PnPn+l) C D. 

Remark. A simpler method to determine the point P n+l is to take it at the midpoint 
of the segment Pl’P2’. However, numerical experiments have exhibited oscillations 
of the free boundary; although these oscillations were small, we have modified this 
method in order to cancel them. By taking P*+l = P3’, we have introduced a dissipa- 
tive effect in the computation of the free boundary; but, in order that the scheme 
remain consistent for arbitrarily small time steps, we have added the condition that 
the point Pn+l should remain between the points P,’ and Pz’ which led us to the method 
described above. 
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Case 2. The point Pn is an extremity of GP. Then P” is lacated on aD and admits 
one neighbor P,” E D n V. The point P n+1 must also be located on aD. To determine 
this point, we use one of the two following methods. 

Method 1. We take Pn+-l = aD n A’,‘, where S1’ is the straight line previously 
defined. 

Method 2. We do not move the point P”; we take Pn+l r= P”. The point Pn will 
cease to be an extremity of P when its neighbor PI” reaches the boundary aD. We 
apply this method when the neighbor point PI” is moved towards the boundary. 
We refer to the next section for practical examples. 

5. NUMERICAL EXPERIMENTS 

We will present numerical results for two different problems. 

(a) Problem 1 

Let {x, v} be a set of Cartesian orthogonal coordinates in RF and 

D = {(x, y); 0 < x < 1, 0 < y < 4}, J-1 = {(x3 0); 0 G x < 11, 
Q(O) = {(x, y); 0 < x < 1, 0 < y < 2 + cos TX}, 

uO(x, y) = 1 - (y/(2 + cos xx)), g = 1, c = 1. 

FIG. 6. 
is the one 

FIG. 7. 
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Problem 1. The domain D, the domain Q(O), and the initial triangulation. The point P 

which corresponds to Fig. 9. 
The triangulation at final time t = 15. We have G’(t) = D; the free boundary has vanished. 
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We choose a triangulation whose nodes are located on fixed straight lines which 
are parallel to the y-axis and equidistant; on each of these lines the nodes are equally 
spaced. Figure 6 represents the triangulation at time t = 0; we have taken ten intervals 
in the direction of each of the coordinates x and y, which yields 200 triangles. 

At each time-step, the nodes are moved in the y-direction. The displacement of those 
which are on the free boundary is computed by the method described in Section 4. 
For the extremities of the free boundary, we use method 1 of Section 4 if they are 
located on either of the two sides of the rectangle D which are parallel to the y-axis; 
we use method 2 if they are located on the side r,’ opposite to r, (which happens 
when the free boundary reaches I’,‘). The interior nodes are moved in such a way 
that they remain equally spaced on each node line parallel to the y-axis. 

We have performed the computations until time t = 15 with time-step At = 0.1. 
Figure 7 represents the final triangulation: the domain Q(t) has invaded the whole 
domain D and the free boundary has vanished. Figure 8 shows the propagation of 
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FIG. 8. Problem 1. Propagation of the free boundary. 
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the free boundary. Each curve represents the free boundary for a fixed value of t. 
Figure 9 represents the temperature u(P, t) at the fixed point P = (0.5, 3) as a funo- 
tion of t. On the corresponding curve we can distinguish the four following periods. 

t 
u (Pet) 

FIG. 9. Problem 1. Variation of the temperature u as a function of time t at the fixed point P. 
x = 0.5, y  = 3. 

Period 1. 0 < t < 2.1. The free boundary has not yet reached the point P. We 
have u(P, t) = 0. 

Period 2. 2.1 -C t -C 6.6. The free foundary has passed the point P, but has not 
yet reached the side I’,‘. The temperature increases. 

Period 3. 6.6 -C t < 6.9. The free boundary has reached the side r,‘, but the 
corresponding domain Q(t) has not yet invaded the whole domain D. The increase of 
temperature speeds up; the curve admits an upward curvature. 

Period 4. t > 6.9. The domain Q(t) has invaded the whole domain D; the free 
boundary has disappeared. The curve admits a downward curvature. The temperature 
keeps on increasing towards the asymptotic value u = 1. 

Finally, Fig. 10 represents the temperature along the midline x = 0.5 for fixed 
values of t. 

We have not worked on minimizing the computation time. At each time-step, the 
system of linear algebraic Eq. (3.1) has been solved by overrelaxation with the co- 
efficient w  = 1.6; the iterations are stopped when the relative difference between two 
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consecutive iterated values of u goes below 0.00001 at all nodes, which yields 30 
iterations on the average. In this way, the computation takes 15 seconds on a com- 
puter CDC 7600. 

1.0 

0.9 

0,s 

0.5 

0.4 

0,3 

0.2 

0,l 

0 

U 

0 95 10 105 2P 2,5 3.0 3,5 40 

FIG. 10. Problem 1. Variation of the temperature u along the midline x = 0.5 for fixed values of t. 

Stability. In order to study the stability of the method, we have made computa- 
tions with various values of the time-step. We have also experimented with various 
values of the constant c of Eq. (2.6) to check if the stability is related to the speed of 
propagation of the free boundary. 

These experiments have shown no instability. However, for each dx and c fixed, 
oscillations appear as the time-step is increased. This phenomenon is exhibited on 
Figs. 11 and 12. They represent the value of uh at the mesh point PI" located next to 
the free boundary on the line x = 0 as a function of the time-index IZ, for AX = l/16, 
c = 1, and for two different values of At. On Fig. 11, we have LI t = AX/~; the curve 
is regular. On Fig. 12, we have At = 4Ax; the curve oscillates and some values of uh 
are negative; but the oscillations are damped and the method is stable. 
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FIG. 11. Problem 1. The value of uh at a mesh-point near the free boundary as a function of the 
time-index n for c = 1, dx = l/16, and dt = AX/~. 

Uh 

FIG. 12. Same as Fig. 11 with dt = 4Ax. Oscillations appear, but the method remains stable. 

TABLE I 

Occurrence of Oscillations and Negative Values of uh ; 
h = At/Ax, Ax = & 

Table I shows that the value of At above which oscillations occur depends on the 
speed of propagation of the free boundary; we have indicated for each value of c 
and dt whether uh admits negative values or remains positive at all mesh points; 
we have noted - in the first case and + in the second case. 

Convergence and order of accuracy. In order to test the accuracy of the method, 
we have performed a series of computations with dr = Ax = h = 2-p for p = 2, 
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3, 4, 5, 6. Let y(x, t) be the value of the ordinate y on the free boundary as a function 
of x and t and let y, denote the corresponding approximation. The values of yh 
for x = 0,0.5, 1 and for t = 2 are given on Table II with the values of the differences 
6y, = y, - yzh and of the ratios Ryh = Sy,/8~,~. Due to the greater complexity 
of the two-dimensional computations, it has not been possible to decrease h as 
much as in the one-dimensional case [4]. However the table shows that 6y, decreases 
as h decreases and Ryh is of the order of 2 for the smallest value of h. Hence, it appears 
that the method is accurate of order 1. 

TABLE II 
Convergence and Accuracy of the Method 

x=0 x = 0.5 x=1 

lib Yh SY* RY, Yh SYh RYE, Yh SYh RY, 
~_____ __._. ._ -_~~--.--.~ --.. 

4 3.353 3.259 2.949 
8 3.181 0.172 2.978 0.280 2.712 0.236 

16 3.122 0.058 2.9 2.902 0.076 3.7 2.679 0.033 7.1 
32 3.085 0.037 1.6 2.843 0.058 1.3 2.635 0.043 0.7 
64 3.068 0.017 2.1 2.810 0.033 1.7 2.610 0.025 1.6 

0 d5 1;o 1:5 2;o 25 3s 

FIG. 13. Problem 2. Propagation of the free boundary. The point P is the one which corresponds 
to Fig. 14. 
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(b) Problem 2 

Let D = {(x, y); 0 < x < 3, 0 < y < 3}, r, = the point (0, 0), Q(O) = {(x, y); 
x>0,y>0,2x+y<2},u0(x,y)=1-X-~y/2,grl,c=l. 

We choose the triangulation nodes equally spaced on fked radial straight lines 
through the point 0 = (0,O). We have divided the right angle (Ox, 0~) into 20 equal 
angles and each radius into 20 equal subintervals, which yields 800 triangles. At each 
time-step the nodes are moved along the corresponding radii, For the extremities 
of the free boundary, we use method 1 or method 2 of Section 4 according to whether 
they are located on the sides of the square D which coincide with the coordinate axes 
or on the two opposite sides. We have performed the computation until t = 40 
with the time-step At = 0.2. 

Figure 13 shows the propagation of the free boundary. Let us notice that the 
representation of the free boundary is not good when t approaches the time of its 
disappearance; in fact, it is near the point (1, I), where the disappearance of the free 
boundary occurs, that the triangulation is the coarser; by refining the triangulation in 
this region we could get a better representation of the free boundary near the end of 
its existence. 

Figure 14 represents the temperature at the center P of the square D, as a function 

t 
u (P,t) 

0 5 10 15 20 25 30 35 40 

FIG. 14. Problem 2. Variation of the temperature II as a function of time t at the fixed point P. 
x = 1.5,y = 1.5. 
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of t; on the curve we distinguish four periods which are similar to those described 
in the previous problem. Finally, Fig. 15 represents the temperature along the diagonal 
line x = y as a function of the distance from the point 0 for fixed values of t. 

FIG. 15. Problem 2. Variation of the temperature II along the diagonal x = y  as a function of 
the distance r from the point 0. The curves correspond to values of t which are multiples of 4. 
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a6 
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OP 

6. GENERAL REMARKS 

6.1. Time Discretization 

To the authors’ knowledge, all other finite element methods for time-dependent 
problems use spatial finite elements and lead to a system of ordinary differential 
equations with respect to the time t; then, the numerical solution of these differential 
equations requires a discretization in time. In the present method, both discretizations 
(in space and in time) are made simultaneously. 

In the case of finite elements whose position is kept fixed, our approach provides 
a new way of deriving some well-known methods for solving partial differential 
equations. We have already mentioned that the discrete Eqs. (3.1) contain the Crank- 
Nicolson scheme as a particular case. Other schemes corresponding to other time 
discretizations can be derived by changing either the space of trial functions ghn 
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or the quadrature formula (3.6). For example, one obtains the classical first-order 
explicit scheme for the heat equation in either of the two following ways. 

(i) Replace the space ghn defined in Section 3, by the space of all functions 
P)~ E V, such that vh(Pr+‘) = 0 at all nodes Pr+l, 1 < 1 < L, and qh(Pln) = 0 if 
Pf+l E c1 u 9% 

(ii) Replace the quadrature formula (3.6) by 

sss # dP dt - (t n+1 - P) $(t,/J; T,“). 
K,n 

(Note that this formula which can be applied to right prisms is not good if the two 
bases Tin and Tin+’ do not have equal areas.) 

Similarly, one obtains the classical first-order implicit scheme in either of the two 
following ways. 

(i) Replace the space 8,” by the space of all functions vh E V, such that YOh(Pln) = 
0 at all nodes Pin, 1 < 1 < L, and q~~(Pr”) = 0 if Pril E C1 u Y. 

(ii) Replace the quadrature formula (3.6) by 

sss z+b dP dt - (tn+’ - t”) $(#; T,““). 
KF 

We have not retained the explicit scheme because of the well-known stability con- 
dition which is too stringent (it is necessary to take the time-steps of the order of d”, 
where d is the space mesh-size). On the contrary, the numerical experiments described, 
in Section 5 show that, our method remains stable for large values of the time-step 
like the Crank-Nicolson scheme. 

More accurate time discretizations can be obtained by choosing more complicated 
trial functions and a more accurate quadrature formu1a.l 

But the essential interest of space-time finite elements lies in their application to 
time-dependent meshes. In particular, they provide a practical way of extending to 
variable meshes certain usual finite difference or finite element methods. 

6.2. Accuracy 

The numerical experiments of Section 5 show that the method is of order 1. 
It would be useless to improve the accuracy of the time discretization without 

improving also the accuracy of the space discretization; this would require the use of 
curved finite elements near the free boundary; the normal derivative of uh would not 
be piecewise constant anymore along the free boundary and would also require an 
improved approximation; the method for computing the displacement of the free 

1 A mathematical theory of the approximation of parabolic problems in a time-dependent given 

domain by means of space-time finite elements will be given in a forthcoming paper with stability 
results and error estimates of arbitrary order [26]. 
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boundary should also be changed and improved. It seems that the improvement of 
the global order of accuracy of our method in the two-dimensional case cannot be 
obtained without many complications. Let us recall that the situation is different in 
the one-dimensional case. In [4] a simple method of the second order of accuracy is 
described and tested. 

6.3. Displacement of the Interior Nodes 

The displacement of the interior nodes at each time step can be chosen arbitrarily 
provided the corresponding prisms Kin are “well conditioned” (see [6]). This condi- 
tion implies that the angle of any two edges which have a common vertex must not be 
too small. A weaker condition can be derived from [16]. Each triangle Tin may admit 
one small angle, but no angle should approach n. This weaker condition is satisfied 
by the triangles used in problem 2 of Section 5; in particular, the triangles, which admit 
the origin as a vertex, have a small angle at the origin, especially if the mesh is refined, 
but none of the two other angles approaches 7~. 

One possibility is to keep the interior nodes fixed for a certain number of time steps 
and then update the whole triangulation. The advantage of this procedure would be 
to avoid computing new coefficients for the discrete Eqs. (3.1) at each time-step. 
However, since the domain is expanding, the triangles which have vertices on the free 
boundary would become much larger than the interior triangles; this would be 
specially bad for the approximation of the normal derivative au/&. 

An intermediate procedure is to fix only the nodes which are “far enough” from the 
free boundary and share the effect of the domain expansion between several layers of 
triangles along the free boundary. The complete rearrangement of all the nodes can 
be made periodically after a fixed number of steps. This procedure, which was suggest- 
ed by one of the referees, would save computer time. 

6.4. Application to More Complex Problems 

We have considered only the simplest case of the Stefan problem. The method can 
also be applied to the two-phase Stefan problem in which the temperature u has to be 
determined in both phases on each side of the free boundary. 

APPENDIX: EXPLICIT EXPRESSIONS FOR THE COEFFICIENTS OF DISCRETE EQS. (3.1) 

Let PC”,” be an arbitrary node which is located in the interior of W or on Zz . There 
corresponds to this node the equation obtained by taking QJ~ = vhzo) in (3.1), with 
I&) defined in Section 3. 

This equation is of the form L(u~) = 0, where L(u,) is the sum of linear forms 
&(uJ relative to each of the triangles T = Tin which admit PC as a vertex. Each 
form &-(u~) is obtained by restricting the integrals of (2.8) to the prism Kin which 
corresponds to the triangle Tin and by performing numerical integration by means 
of the quadrature formulas (3.5), (3.6). We will give the explicit expression of the 
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FIG. 16. The triangle T with vertices PI, ; only the index s is indicated. 

linear form &-(u,) for an arbitrary triangle T with vertices P1”, , P< , Pt , ordered 
counterclockwise. Let u,” = uh(P;) for s = 0, 1, 2; then s 

2 
L+& = c (asnU,n + a:+‘u;+l), 

s=O 

where the expressions of usn and af+l are given below. All the coefficients and all the 
variables which appear in these expressions admit a superscript n or n + 1. For 
simplicity, we omit this superscript when it can take either of these two values; thus, 
in each expression, all the missing superscripts must be replaced by n + T, with 
T = 0 or 1. On the other hand, we denote by X, and yp the coordinates of the point 
Pill with respect to an arbitrary system of orthogonal coordinate axes. With these 
notations, we have 

for s = 0, 1 and 2, with 

01 = (Xl - x0) (Y2 - Yo) - (Yl - Yo) (x2 - x3, 

as = (xs - x0) (Y2 - Yl) - (ys - yo) (x2 - Xl), 

B = (Xl - x0) KY2 - yoP+l - (Y2 - YOH - (YI - Yo) 
x [(x2 - xop+1 - (x2 - Xoyq 
- (x2 - x0) KY1 - yoP+l - (Yl - YOPI + (Yz - Yo) 
x [(Xl - xoP+l - (Xl - XOPI, 

Pa = es - x0) KY2 - YIPfl - (Y2 - YIN - (us - Yo) 
x [(x2 - Xlp+l - (x2 - Xl)“] 
+ (x2 - Xl) (Y;+l - Yo? - (Y2 - Yl) H” - xonlt 

Ys = (Y2 - Yl) Ys’ + (x2 - Xl)Ys”, 

Yo 
‘- 

- Yz - Yl? Yl’ = Yo - Y2 9 Y2' = Yl - Yo 9 
n- 

yo - x2 - Xl, r; = x0 - x2, yz" = x1- x0, 

Eon = -1, n+1 E. = 1, El = E2 = 0. 
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Let us notice that the foregoing expressions are antisymmetric with respect to the 
indices 1 and 2; if these two indices are interchanged the coefficients a,, a, , and a2 
are changed into -a,, , -a, , and -a, , respectively. 
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